
HAL Id: hal-00986340
https://hal.science/hal-00986340v1

Submitted on 2 May 2014 (v1), last revised 1 Jul 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schedulability Analysis for Fixed Priority Real-Time
Systems with Energy-Harvesting

Yasmina Abdeddaïm, Younès Chandarli, Robert I. Davis, Damien Masson

To cite this version:
Yasmina Abdeddaïm, Younès Chandarli, Robert I. Davis, Damien Masson. Schedulability Analysis
for Fixed Priority Real-Time Systems with Energy-Harvesting. 2014. �hal-00986340v1�

https://hal.science/hal-00986340v1
https://hal.archives-ouvertes.fr


Schedulability Analysis for Fixed Priority Real-Time

Systems with Energy-Harvesting

Yasmina Abdeddaïm, Younès Chandarli,
Robert I. Davis and Damien Masson

May 2, 2014

Abstract

This paper introduces sufficient schedulability tests for fixed-priority pre-emptive
scheduling of a real-time system under energy constraints. In this problem, energy
is harvested from the ambient environment and used to replenish a storage unit or
battery. The set of real-time tasks is decomposed into two different types of task
depending on whether their rate of energy consumption is (i) more than or (ii) no
more than the storage unit replenishment rate. We show that for this task model,
where execution may only take place when there is sufficient energy available, the
worst-case scenario does not necessarily correspond to the synchronous release of
all tasks. We derive sufficient schedulability tests based on the computation of
worst-case response time upper and lower bounds. Further, we show that Deadline
Monotonic priority assignment is optimal with respect to the derived tests. We
examine both the effectiveness and the tightness of the bounds, via an empirical
investigation.

1 Introduction

In a context where traditional energy resources are continually decreasing, new and chal-
lenging problems arise that need to be tackled by researchers in different fields. Examples
include, how to use new energy resources in an optimal way, and how to integrate smart
energy management into newly developed electronic applications. Collecting energy from
the ambient environment, so called energy harvesting, is a solution that has significant
benefits, particularly when the powered device is inaccessible or has limited accessibility
making the renewal of a traditional energy source either impossible, potentially dangerous,
or costly.

In an energy harvesting process, energy is drawn from the environment and then con-
verted, using a harvester, into usable electrical power and stored in the battery. Sources of
energy include ambient vibrations (piezoelectric effect), thermal gradients (thermoelectric
and pyroelectric effects), Radio Frequency radiation (rectifying antenna), movement (via
magnetic induction), solar radiation (photovoltaics), and even blood sugar (via oxidation
by enzymes powering an implanted device). Compared to classical forms of energy storage,
the environment can provide a continuous and essentially unbounded supply of energy,
allowing the energy consumption of the system to be adjusted to maximize performance
instead of minimizing overall energy consumption.

1



In this paper we consider the problem of real-time scheduling for systems using energy-
harvesting. The challenge here is to schedule real-time tasks with hard deadlines while
making the best use of available energy. Compared to classical real-time scheduling mod-
els, we do not neglect the fact that tasks consume energy during their execution. In
this paper, we make the simplifying assumption that each task may use energy up to a
maximum rate of power dissipation (i.e. energy per unit of execution), but that rate may
be different for different tasks.

In real-time systems utilising energy harvesting, the energy needed for task execution
is supplied by the storage unit (i.e. a battery or capacitor) which has a fixed capacity. The
energy in the storage unit is replenished continuously by the electrical energy produced
by the harvester. In general, the energy provided by the harvester in a given time interval
can be described by the integral of the replenishment rate over that time. In this paper
we assume that the replenishment rate is a constant, or at least lower bounded by a
constant. This assumption simplifies the problem; nevertheless, it corresponds to some
existing harvesting technologies (see Section 3).

As some tasks may consume energy faster than the replenishment rate (so called
consuming tasks), the energy in the storage unit may diminish until it is no longer sufficient
to support execution. At such times processing must be suspended until sufficient energy
has been replenished for execution to continue. Classical real-time scheduling algorithms
need to be adapted to cater for this behaviour.

In this work we use PFPASAP , an energy-aware adaptation of fixed priority pre-
emptive scheduling (FPPS).This algorithm is similar to FPPS in that at any given time
it selects the job of the highest priority active task for execution; however, unlike FPPS,
PFPASAP only executes the next execution time unit of that job if there is sufficient
energy available to do so. The algorithm PFPASAP is optimal with respect to all fixed
priority algorithms for non-concrete periodic task sets, compliant with a model where all
tasks are consuming tasks [1]. In this paper, we consider real-time task sets comprising
two types of tasks: (i) consuming tasks that have a rate of energy consumption that
is higher than the replenishment rate, and (ii) gaining tasks that have a rate of energy
consumption that is no more than the replenishment rate. We show that for this more
general model, the critical instant leading to the worst-case response time of a task does
not necessarily correspond to a synchronous release with all higher priority tasks, and
so the analysis given in [1] is not applicable. For the more general model, we derive
two response time upper bounds providing sufficient scheduling tests. We also prove that
Deadline Monotonic priority assignment [13] is an optimal priority assignment policy with
respect to these sufficient schedulability tests.

The remainder of the paper is organized as follows. In Section 2, we review related
work on real-time scheduling for systems using energy-harvesting. In Section 3 we present
the system model, terminology and notation used in the rest of the paper. In Section 4 we
briefly recapitulate on classical response time analysis, and show how this was extended to
analysis of the PFPASAP algorithm for energy-constrained systems with only consuming
tasks. In Section 5 we introduce sufficient schedulability analysis for the more general task
model with both consuming and gaining tasks. Section 6 provides a performance evalu-
ation investigating the effectiveness and tightness of these schedulability tests. Section 7
concludes with a summary and discussion of future work.

2



2 Related Work

The first work addressing the real-time scheduling problem for systems using energy har-
vesting was presented by Mossé in 2001 [3]. The proposed algorithm was for a frame-based
model where all of the tasks have exactly the same period and the same deadline. In 2006,
Moser et al. [16] proposed an optimal algorithm called LSA (Lazy Scheduling Algorithm).
Unlike our model, the results of this work rely on the assumption that a task’s energy
consumption is directly linked to its worst-case execution time. In 2011, Chetto et al. [10]
proposed an algorithm called EDeg. With EDeg, Earliest Deadline First scheduling is
used as long as the system can perform; however, execution is suspended when a future en-
ergy failure is detected. To detect a future energy failure the notion of slack time [12, 9, 7]
was extended to slack energy; however, the computation of the slack energy can lead to a
huge overhead. Finally, the PFPASAP algorithm for fixed priority pre-emptive scheduling
was proposed by Abdeddaïm et al. in 2013 [1], in this work all of the tasks were assumed
to consume energy faster than it is replenished.

3 Models and Notations

An energy harvesting system is composed in most applications of two main parts: the
harvester that converts energy from the ambient environment into electrical power and
the storage unit used to store the electrical energy produced. The choice of the harvested
energy source, the harvester and the storage unit must be considered according to the
target application characteristics. Concerning the energy source, wind, ocean waves or
solar energy can provide a large amount of energy but are characterised by significant
variability in the energy produced [17]. On the other hand, mechanical energy sources
such as machine vibrations provide a small amount of energy but more consistent and
continuous replenishment [2].

To manage the possible variations over time, power management circuits can be used in
the harvester to adapt the inputs and outputs of the harvester to meet the desired power
rate [2], however, the harvester consumption should stay less than the energy gained
from the environment. When the power consumption of the target device is greater than
the energy provided from the environment, the harvested energy must be stored in a
storage unit to be used at an appropriate time. The storage unit can be a capacitor
or a battery, this choice depends on the desired properties, such as the performance at
different temperatures, the dissipation of energy, the capacity required and the weight.

In this paper, we consider a hard real-time system equipped with an energy harvesting
system. The system comprises a single processor which executes a set of tasks according
to the energy-aware fixed priority pre-emptive scheduling algorithm PFPASAP . In the
following subsections, we present our model and give more details about the applications
for which our model is the most appropriate.

3.1 Energy Source Model

In this paper we suppose that the quantity of energy that arrives in the storage unit is a
function of time which is either known or bounded. The replenishment of the storage unit
is performed continuously even during the execution of tasks. Pr(t) is the replenishment
function of the battery, then, the energy replenished during any time interval [t1, t2]

3



denoted as g(t1, t2) is given by (1).

g(t1, t2) =
∫ t2

t1

Pr(t)dt (1)

As mentioned above, there are many exploitable sources of environmental energy.
However, the generated current and voltage differ from one source to an other. Further-
more, the yielded energy is not stable over time in all sources. For example, the energy
generated with a solar cell depends on the intensity of light which is highly variable be-
cause of the day/night cycles and the weather variations. In this paper we target small
embedded systems that do not consume a lot of energy but require a stable source (e.g.
Wireless Sensor Networks). According to [2, 17] the most appropriate source that fulfills
these requirements is piezoelectric vibration energy. The energy generated with this tech-
nique depends on the vibration frequency, and even thought the vibration frequencies can
vary over time, because of engine speed changes for example, the generated energy can
still be stable thanks to a new generation of piezoelectric vibration energy harvesters that
are able to yield an optimal output of energy even with 40% vibration frequency variation
[2]. Knowing that in most industrial machines the variation of vibrations is much lesser
than 40%, we can consider that in the worst case the storage unit is replenished at a lower
bound constant rate.

Thus, in the following we assume Pr(t) to be a constant function, i.e. Pr(t) = Pr.
Then, the energy replenished during any time interval [t1, t2] is given by (2).

g(t1, t2) = (t2 − t1) × Pr (2)

3.2 Energy Storage Unit Model

Nowadays, there are many types of energy storage devices available on the market, from
chemical batteries (e.g., Alkaline, Ni-Cd, Ni-MH, Li-ion, etc) to supercapacitor (e.g.,
Double-layer capacitors, Pseudocapacitors, Hybrid capacitors,etc). If we consider as a
targeted application small embedded systems that operate with a small amount of energy
and a constant rate of charging, the appropriate storage unit is a supercapacitor because,
firstly, it can be replenished linearly which allows the system to use fully the incoming
energy from the harvester and secondly, it supports a high number of charge/discharge
cycles.

In the following we abuse the term battery to indicate the storage unit or the superca-
pacitor. We consider that the energy stored in the battery may vary between two levels
Emin and Emax, where Emax is the maximum capacity of the battery, and Emin is the
minimum energy level needed to keep the system running. For the sake of clarity, and
without loss of generality we assume that Emin = 0. The battery level at time t is denoted
by E(t). We note that as supercapacitors self-discharge due to leakage current, we make
the safe assumption that only minimal energy is available when the system is deployed or
activated, i.e. E(0) = Emin.

The energy level in the battery is not permitted to fall below Emin; in contrast, if
it reaches Emax, then any further replenishment above that level is effectively wasted,
since the maximum amount of energy that can be stored is capped. In this work, we
assume Emax to be large enough to warrant that the schedule produced by PFPASAP is
not impacted by this phenomenon. Since it is important in embedded applications to
minimize the battery capacity, due to cost and weight concerns, we discuss in Section 5.6
the minimum capacity required given our analysis.

4



3.3 Task Model

The task set comprises a static set of n sporadic and independent tasks {τ1, τ2, . . . , τn}.
Each task τi is characterized by its unique priority i. Without loss of generality, we
assume that the tasks are in priority order, thus task τ1 has the highest priority and task
τn the lowest. We use the notation hep(i) to mean the set of tasks with priorities higher
than or equal to i. Each task τi has a worst-case execution time Ci, a minimal inter-
arrival time or period Ti, a relative constrained deadline Di (Di ≤ Ti), and a worst-case
energy consumption Ei. The worst-case power consumption (i.e. energy used per unit
of execution time) of a task τi is given by Pi. Thus the worst-case energy consumption
equates to executing for the worst-case execution time, at the maximum rate of power
consumption (i.e. Ei = Pi × Ci).

The execution time and the energy consumption of tasks are assumed to be indepen-
dent. For example considering two tasks τi and τj, we may have Ci < Cj and Ei > Ej. The
energy dissipation of the system can change according to the energy consumption of the
tasks. The set of tasks Γ is seperated into two distinct subsets Γc and Γg. The first one Γc

contains the consuming tasks, the ones that consume more energy than is replenished dur-
ing their execution, whereas Γg is composed by the gaining tasks, that consume no more
energy than is replenished during their execution. We have Γc = {τi ∈ Γ, Ei > Pr × Ci}
and Γg = {τi ∈ Γ, 0 ≤ Ei ≤ Pr × Ci}.

We define the processor utilization of task τi as up
i = Ci/Ti and its energy utilization

as ue
i = Ei/(Ti × Pr). The total utilization of the task set is the sum of the utilizations

of all its tasks, i.e. Up =
∑n

i=1 up
i . Similarly the energy utilization of the task set is given

by U e =
∑n

i=1 ue
i .

3.4 The Scheduling Algorithm PFPASAP

The behaviour of the PFPASAP scheduling algorithm is formally defined as follows: at any
given time instant t, the job of the highest priority active1 task τj is selected for execution;
however, that job is only executed during the interval [t, t + 1) if there is sufficient energy
available for that unit of execution i.e. E(t) + Pr ≥ Ej/Cj. Note we assume that all task
and system parameters are in discrete time and discrete energy units.

The worst-case response time Ri of task τi under PFPASAP scheduling is defined as
the longest possible time from the release of a job of that task until the job completes
execution, (i.e. for any valid sequence of job releases generated by the task set and any
valid initial battery level). Task τi is thus schedulable under PFPASAP if and only if
Ri ≤ Di. The task set is schedulable if all of its tasks are schedulable.

4 Existing Response time analysis

In this section, we first recapitulate the classical response time analysis for fixed priority
pre-emptive scheduling (FPPS) [11, 4] and then show how this analysis can be extended to
systems with energy harvesting, but restricted to either all gaining tasks, or all consuming
tasks [1].

Let {τ1, τ2, . . . , τn} be a set of real-time tasks (as defined in Section 3) where the tasks
do not consume energy i.e. ∀i Ei = 0. Response time analysis for such systems makes use
of the concept of a priority level−i busy period. This is defined as a contiguous interval of

1An active task is one that has a job that has been released but not yet completed.

5



time during which the processor is busy executing jobs of priority level−i or higher, that
were released during the interval. In the case of FPPS of tasks with constrained deadlines,
the worst-case response time Ri of task τi corresponds to the length of the longest priority
level−i busy period.

To calculate the longest priority level−i busy period, it suffices to consider only the
worst-case scenario or critical instant [14] for which a job of task τi is subject to the
maximum possible delay. This occurs when task τi is released simultaneously with all
tasks of higher priority, which are then re-released as soon as possible. In this case, the
worst-case response time Ri of a task τi is given by the smallest t > 0 that satisfies:

t = F (i, t)

where

F (i, t) =
∑

h∈hep(i)

⌈

t

Th

⌉

× Ch (3)

We note that (3) may be solved using fixed point iteration starting with t = Ci

and ending on convergence or when t > Di in which case the task is unschedulable.
(Convergence may be speeded up using the techniques described in [8]).

We note that FPPS is a work-conserving scheduling policy, since it never leaves the
processor idle when there are any active tasks. In an energy harvesting context, the
notion of a work-conserving policy can be usefully refined. We refer to a fixed priority
scheduling policy as energy work-conserving if while there are any active tasks requiring
execution, the scheduling policy only ever leaves the processor idle if there is insufficient
energy available to schedule at least one time unit of the highest priority active task.

The energy work-conserving scheduling algorithm PFPASAP is optimal among all fixed
priority scheduling algorithms for the case where all tasks consume energy (Γg = ∅) [1]. In
this case, the critical instant for task τi corresponds to synchronous release with all tasks
of higher priority at a time when the battery level is at its minimum. This characterisation
of the critical instant greatly simplifies the schedulability analysis problem, allowing task
response times to be obtained via fixed point iteration in a similar way to the classical
response time analysis for FPPS, but replacing Equation (3) by

F (i, t) =













∑

h∈hep(i)

⌈

t

Th

⌉

× Eh



 /Pr









(4)

5 Schedulability Analysis

In this section, we provide sufficient schedulability tests for systems with both consuming
and gaining tasks. First we show that the critical instant for such task sets does not
necessarily correspond to synchronous release. Lack of information about the actual
worst-case scenario makes the schedulability analysis problem much more difficult. We
address this problem by introducing the concept of a priority level-i energy busy period
(defined in Section 5.2). The worst-case response time of task τi must necessarily occur
within such a busy period. We derive two upper bounds on the maximum length of this
busy period, which we then use to obtain upper bounds on the worst-case response time
of the task. We use a similar approach to also derive response time lower bounds.

6



Tasks Ci Ei Ti Di

τ1 2 2 8 3
τ2 3 15 10 9

(a) Task set

0 2 4 6 8 10
0
2
4
6
8
10Emax

Emin

0 2 4 6 8 10

τ1

0 2 4 6 8 10

τ2

R2
(b) Asynchronous requests

0 2 4 6 8 10
0
2
4
6
8
10Emax

Emin

0 2 4 6 8 10

τ1

0 2 4 6 8 10

τ2

R2
(c) Synchronous requests

Figure 1: Worst-case scenario counter example

5.1 Worst-case scenario

When we consider only consuming tasks or only gaining tasks, the worst-case scenario
(critical instant) occurs when all higher priority tasks are released simultaneously and
the battery is at its minimum level. For the case when we have only gaining tasks, the
response time analysis is the same as the classical formulation given by (3), since there
are no delays due to energy considerations.

For the case where we have only consuming tasks, launching the tasks simultaneously
with the battery at its minimum level maximizes the idle periods needed for energy
replenishment. This increases the time required to complete the execution of higher
priority tasks, which leads to the longest response time for each task, given by (4) as
proved in [1].

In contrast, when we consider a task set composed of both gaining and consuming tasks
the worst-case scenario is not the same for all the tasks, it depends on the composition of
the subset of higher priority tasks. If that subset contains both gaining and consuming
tasks, then the worst case scenario is not necessarily the synchronous activation of all the
tasks with the minimum battery level.

Figure 1 illustrates a situation where the response time of task τ2 is longer (R2 = 7)
when a gaining task of higher priority is requested later, than it is with synchronous
release (R2 = 6). This is due to the fact that in the former case, task τ2 suffers two
replenishment delays (at time t = 0 and t = 2), whereas in the later case it suffers only
one replenishment delay (at time t = 4). This happens because task τ1 is a gaining task
and there is a net increase in energy as it executes.

7



5.2 Sequences and Energy Busy Periods

We now introduce terminology and concepts that we use in proving key properties about
scheduling systems with energy constraints. We use the term execution unit to refer to
a non-divisible unit of execution of a job. An execution-unit has the same length as the
basic time unit used to describe task execution times, and is of the same length for all
tasks. We use the term replenishment unit to refer to the minimum indivisible unit of
idling time used to replenish energy. Execution-units and replenishment-units are of the
same duration.

An execution sequence is a vector X of execution units from 1 to LX , where LX is the
number of execution units in the sequence. Each element X[m] of the sequence indicates
the task that the execution unit belongs to. A sequence does not contain replenishment
units, and so LX does not necessarily represent the number of time units needed to execute
the sequence. We denote the energy required by execution unit X[m] by EX [m]. Further
we use E∗

X [m] to denote the total energy required by execution units from the start of the
sequence up to and including execution unit X[m]. Thus:

E∗

X [m] =
∑

q=1...m

EX [q] (5)

The minimum number of replenishment units IX [m] required to provide sufficient
energy to execute X[m] at the end of the subsequence X[1] to X[m] is given by:

IX [m] =

⌈

E∗
X [m] − E(0)

Pr

⌉

(6)

where E(0) is the energy available at the start of the sequence.
We note that an earlier execution unit X[k] may require more prior replenishment units

than a later one X[m] due to the presence of execution units of gaining tasks between
X[k] and X[m], (i.e. IX [k] > IX [m] where m > k). We use I∗

X [m] to denote the minimum
number of replenishment units required to execute all of the subsequence X[1] to X[m]
in order.

I∗

X [m] = min
k=1...m

(IX [k]) (7)

The elapsed time required to execute sequence X is given by LX + I∗
X [LX ].

Lemma 1. For a fixed sequence X of execution units, the elapsed time for the sequence
is maximised when the initial energy available is minimised, i.e. E(0) = 0.

Proof. Follows directly from (6) and the formula for the elapsed time to execute the
sequence: LX + I∗

X [LX ].

Lemma 2. Any sequence containing only execution units of consuming tasks requires the
same elapsed time to execute irrespective of the order of its execution units provided that
the set of execution units and the initial energy are the same. Similarly, any sequence
containing only execution units of gaining tasks requires the same elapsed time to execute
irrespective of the order of its execution units provided that the set of execution units is
the same.

Proof. See Appendix A

8



Definition 1. A priority level−i energy busy-period is defined as a contiguous interval of
time [0, w) during which the processor is busy executing jobs of priority level−i or higher,
that were released during the interval, but strictly before its end at time w, or there is
an active job of priority i or higher and the processor is necessarily idling to replenish
sufficient energy to execute the next execution unit of the highest priority active job.

We note that any execution of a job of task τi must by definition of a priority level−i
energy busy-period occur within such a busy period.

Lemma 3. Under PFPASAP scheduling, for a schedulable task τi, the worst-case response
time Ri of the task equates to the longest possible priority level−i energy busy-period.
Further, there exists a busy period of this length that includes a single job of task τi,
begins at the release of this job and ends with the final execution unit of the job.

Proof. As task τi has the lowest priority of any task executing in such a priority level−i
energy busy-period, under PFPASAP scheduling the busy period necessarily ends with the
final execution unit of that task. This is the case because if there were any outstanding
higher priority tasks, they would execute in preference to task τi.

As task τi has a constrained deadline and is schedulable (by the Lemma), it can only
have one job in the busy-period, otherwise the completion of the previous job of task τi

would have to take place after the release of the final job of the task implying (as Di ≤ Ti)
that the previous job was unschedulable.

Let X be the sequence of execution units representing all execution in the busy period.
If the job of task τi was not released at the start of the busy period, then we can move
its release time back to the start of the busy period. Since task τi has the lowest priority
of any task in the busy period, such a change cannot make any difference to the actual
order of execution as represented by sequence X and so has no impact on the elapsed
time required to execute the sequence. Such a change can therefore only increase the
worst-case response time of the job.

Lemma 3 proves that the worst-case response time for a task τi occurs in a priority
level−i energy busy-period starting with the release of that task. However, as shown in
Figure 1, synchronous release of all higher priority tasks may not result in the worst-case
response time for task τi. In general, we do not know what scenario, or pattern of releases
of higher priority tasks will result in the worst-case response time for task τi; however, we
can derive further information about possible worst-case scenarios.

Lemma 4. The maximum possible number of jobs of a higher priority task τh causing
interference in the longest priority level−i busy period (characterising the worst-case re-
sponse time of task τi ) is given by ⌈w/Th⌉ where w is the length of the busy period.

Proof. Lemma 3 shows that the busy period starts (at time t = 0) with the release of
task τi, hence at t = 0, there can be no jobs of higher priority tasks with outstanding
execution, other than those also released at t = 0, otherwise the busy period would have
started earlier. It follows that the maximum number of higher priority jobs of task τh in
the busy period is given by ⌈w/Th⌉.

5.3 Response Time Upper Bounds

Since, we do not know the precise pattern of releases of higher priority jobs that leads
to the worst-case response time for task τi, we cannot determine the exact worst-case

9



response time. Instead, we derive an upper bound RUB1
i and then a tighter upper bound

RUB2
i on the exact worst-case response time Ri, where RUB1

i ≥ RUB2
i ≥ Ri. These upper

bounds provide sufficient schedulability tests UB1 and UB2 respectively, where UB2
dominates UB1.

The process we use to obtain these upper bounds is similar to the classic formulation
of response time analysis presented in section 4. We aim to find the smallest interval
w, for which an upper bound on the response time of task τi, considering the maximum
possible interference from higher priority tasks released in that interval, equates to the
length of the interval. The value of w then provides an upper bound on the worst-case
response time of task τi.

We require a function F (i, w) that upper bounds the length of the longest priority
level−i energy busy-period formed by a single job of task τi and jobs of higher priority
tasks released during an interval of length w. Provided that F (i, w) is a monotonically
non-decreasing function of w, then we may obtain an upper bound on the worst-case
response time of task τi corresponding to the smallest value of w > 0 that satisfies:

w = F (i, w) (8)

Equation (8) may be solved using fixed point iteration starting with w = Ci and ending
on convergence or when w > Di in which case the task is deemed unschedulable.

5.4 Upper Bound RUB1

We now derive a simple upper bound RUB1
i on the worst-case response time of task τi.

First we prove a Lemma used in its derivation.

Lemma 5. Let X be some arbitrary sequence of execution units of tasks of priority i
or higher, and Y be the equivalent sequence re-ordered such that all execution units of
consuming tasks come before all execution units of gaining tasks. The elapsed time required
to complete sequence Y is no shorter than that required to complete sequence X.

Proof. See appendix B.

Theorem 1. An upper bound on the worst-case response time for task τi for a set of jobs
released in a window of length w can be obtained by assuming that there is one job of task
τi and ⌈w/Th⌉ jobs of each higher priority task τh. Further, the upper bound is obtained
from a sequence Z of the execution units of these jobs where all the consuming execution
units are before all the gaining execution units.

Proof. Let X be the sequence of execution units that results in the longest priority level-i
energy busy-period under PFPASAP scheduling, and hence the longest response time for
task τi), for a set of jobs released in a window of length w. The elapsed time for the
sequence is given by LX + I∗

X [LX ] where LX is the length of the sequence and I∗
X [LX ] is

the total number of replenishment units required. Lemma 5 shows that the elapsed time
required to execute a sequence Y is no shorter than that required to execute sequence X,
where sequence Y comprises the execution units in X re-ordered such that all execution
units of consuming tasks are placed before execution units of gaining tasks. Note that at
this point we do not know how many jobs of higher priority tasks are present in sequence
X and therefore also in sequence Y ; however, by Lemma 4 we know that the maximum
number of jobs of a higher priority task τh that could be present is ⌈w/Th⌉. Hence we

10



add execution units to sequence Y as necessary to account for any shortfall in the number
of jobs in X below this value, thus forming sequence Z. (Consuming execution units are
added at the start of the sequence and gaining execution units at the end). We note that
such additional execution units cannot reduce the elapsed time required to execute the
sequence since all execution units of both consuming and gaining tasks require a positive
amount of energy. Sequence Z (as described in the Theorem) therefore requires an elapsed
time to execute that is no smaller than that of sequence X.

We use Theorem 1 to formulate the workload function F UB1(i, w) for upper bound
RUB1

i . We assume that the initially available energy is zero, the number of jobs of task
τi and each higher priority task released in an interval of length w is given by ⌈w/Th⌉,
and that all execution units of consuming jobs are executed before all execution units of
gaining tasks. We note that the number of jobs considered equates to synchronous release
of all the tasks, with re-release as soon as possible. This is equivalent to the critical
instant for classical tasks without energy considerations. Although this is not necessarily
the worst-case scenario for tasks that require energy (see Figure 1 for a counter example),
it is the worst-case scenario with respect to how our upper bounds are computed. The
workload function for RUB1

i is given by:

F UB1(i, w)=

















∑

h∈hep(i)∩Γc

⌈

w

Th

⌉

×Eh

Pr

















+
∑

h∈hep(i)∩Γg

⌈

w

Th

⌉

×Ch (9)

where the first term represents the total time to complete the execution units of consuming
tasks, which are in effect energy-bound, and the second term is the time taken to complete
the execution units of gaining tasks, which are processing time bound.

Observe that F UB1(i, w) is a monotonically non-decreasing function of w since all
terms are positive and w only appears in the numerator of ceiling functions. Further
F UB1(i, w) ≥ Ci since ⌈Ci/Ti⌉ = 1 and if task τi is a consuming task then Ei/Pr ≥ Ci,
hence Ci serves as a valid initial value for fixed point iteration.

We note that in the case where all tasks are gaining tasks and so energy is not a
consideration, (9) reduces to the exact analysis for classical tasks given by (3). Further,
in the case where all tasks are consuming tasks (9) reduces to the analysis for that case
given by (4).

5.5 Upper Bound RUB2

We can refine the first upper bound by considering a more realistic scenario. More pre-
cisely, the idea is to take into consideration the fact that some gaining jobs cannot be
executed after some consuming ones, because of their respective deadlines and releases,
which define sub-intervals in which they are forced to run when the system is schedulable.

This idea is illustrated in Figure 2, which shows three jobs of a consuming task and
three jobs of a gaining task. We know that provided the tasks are schedulable, job 1 of the
gaining task must run before job 3 of the consuming task. This information can be used
to compute a tighter upper bound on the maximum time needed to complete all of the
jobs in the interval.

We now derive our second upper bound RUB2
i . The workload function F UB2(i, w) for

RUB2
i is derived from a dummy schedule and the sequence of execution units obtained

11



1

Consuming

Jobs:

Early as 

possible

32

Gaining 

jobs:

Late as 

possible

21 3

w
1 2 3 4 5 6 7 8 9 10 110 12

 

Figure 2: Dummy schedule used in the construction of UB2

from it. Construction of the dummy schedule is as illustrated in Figure 2. The dummy
schedule is measured in time units and covers the interval [0, w). It has a timeline for
each task of priority i and higher, with one job of task τi and ⌈w/Th⌉ jobs of each higher
priority task τh. Jobs of consuming tasks (including task τi if it is one) are placed in the
dummy schedule starting with a release at t = 0, with subsequent releases as soon as
possible. These jobs are assumed to execute immediately. For gaining tasks (including
task τi if it is one) we first align the release of the last job at time w − Ci this job is
assumed to execute immediately. Previous jobs of the gaining task are then released as
late as possible respecting the release time of the subsequent job, and assumed to execute
as late as possible i.e. just prior to their deadlines. Thus jobs of gaining tasks are added
from the end of the dummy schedule working backwards in time, and jobs of consuming
tasks are added from the start of the dummy schedule working forwards in time. Note
that there may be overlaps between the schedules where more than one task appears to
execute at the same time. This is shown in Figure 2: intervals [4, 5] and [9, 10].

From the dummy schedule, we derive a sequence Z of execution units. This sequence
is composed by starting at the beginning of the dummy schedule with an empty sequence
and appending all gaining tasks with execution in that time unit onto the sequence,
followed by all consuming tasks with execution in the same time unit. This process is then
repeated for all subsequent time units until all execution units have been collected. Note
ties between execution units of two or more gaining tasks or two or more consuming tasks
may be broken arbitrarily; however, all execution units of gaining tasks associated with
some time unit t are placed into the sequence ahead of all execution units of consuming
tasks associated with the same time unit. All execution units associated with a later time
unit e.g. t + 1 appear later in the sequence than those associated with an earlier time
unit t (We note that clashes may safely be resolved by giving preference to gaining tasks,
since those execution units must necessarily take place by that time otherwise a deadline
will be missed. Execution units of consuming tasks could and would have been executed
earlier in any real schedule that meets all deadlines).

Finally, the workload function F UB2(i, w) is computed giving the elapsed time required
to execute sequence Z, assuming that the initial energy is at its minimum. This can be

12



done via simulation, limited to at most a length of time Di.

Theorem 2. An upper bound on the worst-case response time for task τi for a set of jobs
released in a window of length w, where no higher priority jobs miss their deadlines, can
be obtained by assuming that there is one job of task τi and ⌈w/Th⌉ jobs of each higher
priority task τh, with the upper bound equating to the maximum time required to execute
a sequence Z of the execution units of these jobs constructed according to the rules and
dummy schedule construction described previously.

Proof. Let X be the sequence of execution units that results in the longest priority level−i
energy busy-period under PFPASAP scheduling (and hence response time for task τi) for
a set of jobs released in a window of length w where all higher priority tasks meet their
deadlines. For each task τh, let Nh be the number of jobs in sequence X. Consider a
sequence Y formed by constructing a dummy schedule of length w including Nh jobs
of each task τh and one job of task τi and applying the rules stated above for ordering
execution units (Recall from Lemma 3 that there is only one job of task τi in the busy
period, and hence in sequence X). Sequence Y and sequence X contain an identical
set of execution units. Since no deadlines are missed when sequence X is executed,
and the dummy schedule used to construct sequence Y places execution units of gaining
jobs as late as possible without missing a deadline, in relation to the execution units
of consuming jobs which are placed as early as possible without invalidating minimum
inter-arrival constraints. It follows that sequence Y can be obtained from sequence X
by a process of swapping earlier gaining execution units for later consuming execution
units (Note that re-ordering of sub-sequences consisting of solely gaining execution units
or solely consuming execution units may also be needed to obtain precisely the same
sequence; however, Lemma 2 shows that this re-ordering among execution units of the
same type has no effect on the elapsed time required to execute the complete sequence).
Finally, we compare sequence Z obtained as described in the Theorem, and sequence Y .
If sequence Y contains the maximum number of jobs ⌈w/Th⌉ of each task that may be
released in a window of length w, then it is identical to sequence Z. Otherwise, sequence
Z may be obtained from sequence Y by adding execution units for any missing jobs where
⌈w/Th⌉ > Nh. Since all execution units require energy, addition of execution units into the
sequence at any point cannot decrease the elapsed time required to execute the sequence.
Hence the elapsed time required to execute sequence Z is no shorter than that required
to execute sequence X.

Theorem 2 shows that F UB2(i, w) provides a valid upper bound on the worst-case
response time for task τi considering all jobs released in a window of length w. In order to
use F UB2(i, w) in a fixed point iteration to determine an upper bound on the worst-case
response time of task τi we must also show that F UB2(i, w) is a monotonic non-decreasing
function of w, and that F UB2(i, w) > Ci, so that we may use Ci as an initial value. The
latter is trivially the case since a single job of task τi is always included in the workload
and takes at least time Ci to execute.

Theorem 3. F UB2(i, w) is a monotonically non-decreasing function of w.

Proof. See Appendix C.

We now return to the assumption in Theorem 2 that all deadlines of higher priority
tasks are met. This might seem to imply that task schedulability must be checked highest
priority first; however, this is not necessary the case. Consider what happens if we test

13



task schedulability lowest priority first. We tentatively test the schedulability of task τi

on the assumption that all higher priority tasks will later be found to be schedulable. If
task τi is deemed schedulable (caveat this assumption), then we go on to check higher
priority tasks. If some higher priority task τh is subsequently found to be unschedulable,
then this undermines the validity of our schedulability test for task τi; however, this is
now of no consequence, since the task set is in any case unschedulable due to task τh. If
instead, all higher priority tasks are found to be schedulable, then the schedulability test
for task τi is validated (We note that the schedulability or otherwise of a lower priority
task τi has no impact on the schedulability of any higher priority task τh).

Theorem 4. Schedulability test UB2 dominates test UB1 i.e RUB1
i ≥ RUB2

i .

Proof. We prove the theorem by showing that F UB2(i, w) ≤ F UB1(i, w). Consider the
sequence Y representing F UB1(i, w) and the sequence X representing F UB1(i, w). The
sequences contain the same elements; however, in sequence Y all of the gaining execution
units are before all of the consuming execution units, hence by Lemma 5, the elapsed time
required to complete sequence Y is no shorter than that required to complete sequence
X.

5.6 Battery Capacity

We now return to a consideration of the maximum battery capacity Emax. For the suffi-
cient test UB1 to be valid, we require that Emax ≥ max∀i(Ei/Ci)−Pr. This small battery
capacity is sufficient, since in computing an upper bound on the worst-case response time,
UB1 assumes that all consuming execution units come before all gaining execution units.
The minimum battery capacity needed to execute this sequence without impinging on the
elapsed time required is simply enough to execute the most costly unit of execution in
terms of energy, which equates to max∀i(Pi) − Pr or max∀i(Ei/Ci) − Pr. We note that
this is implicitly multiplied by 1 time unit, so that both the left hand side (Emax) and
the right hand side are in units of energy.

By comparison, for the sufficient schedulability test UB2 to be valid, it suffices to have
a maximum battery capacity Emax that equates to at least the total net energy required
to execute all of the consuming jobs in the longest possible priority level-n energy busy
period. Such a store of energy upper bounds that which can ever usefully be deployed
to execute consuming jobs in any possible busy period. Having a larger battery capacity
than this is equivalent in terms of task response times to having infinite battery capacity
(Note that by the total net energy required by consuming jobs, we mean Etot −(Ctot ×Pr),
where Etot is the total energy required by consuming jobs in the longest busy period, and
similarly Ctot is the total processing time that they require).

5.7 Response Time Lower Bound

In this section, we derive an analytical lower bound RLB1
i ≤ Ri on the worst-case response

time of task τi. To obtain the lower bound, we analyse a specific scenario that corresponds
to the synchronous release of task τi along with all higher priority tasks, which are then
assumed to be re-released as soon as possible. Further, we assume that the initial energy
is a minimum i.e. E(0) = 0. Although this is not necessarily the worst-case scenario, it is
a valid scenario and hence suffices to provide a valid lower bound on the longest priority
level−i energy busy period and hence the worst-case response time of task τi.

14



We obtain the lower bound response time RLB1
i via fixed point iteration, using a

workload function F LB1(i, w) that is monotonically non-decreasing in w and lower bounds
the elapsed time needed to execute all jobs of tasks of priority i or higher released in an
interval of length w starting with a synchronous release.

Lemma 6. Let X be some arbitrary sequence of execution units of tasks of priority i
or higher, and Y be the equivalent sequence re-ordered such that all execution units of
consuming tasks come after all execution units of gaining tasks. The elapsed time required
to complete sequence X is no shorter than that required to complete sequence Y .

Proof. Follows by applying similar reasoning to the proof of Lemma 5.

Theorem 5. A lower bound on the worst-case response time for task τi assuming syn-
chronous release with all higher priority tasks resulting in a priority level−i energy busy
period of at least length w, can be obtained by assuming that there is one job of task τi and
⌈w/Th⌉ jobs of each higher priority task τh in the busy period. Further the lower bound
equates to the time required to execute a sequence Z of the execution units of these jobs
where all the consuming execution units are after all the gaining execution units, and the
initial energy is a minimum.

Proof. By the theorem, the busy period is at least w long, hence under PFPASAP sch-
eduling all ⌈w/Th⌉ jobs of each higher priority task τh released during the interval [0, w)
must complete before the single job of task τi. Let X be the sequence of execution units
of all of the jobs under PFPASAP scheduling. The elapsed time required to execute se-
quence X lower bounds the worst-case response time of task τi. Further, let Z be (as per
the theorem) the same set of execution units as sequence X re-ordered such that all the
consuming execution units are after all the gaining execution units. By Lemma 6, the
elapsed time to execute sequence Z is no longer than that required to execute sequence
X.

We use Theorem 5 to formulate our lower bound workload function F LB1(i, w). We
assume that the initially available energy is zero, the number of jobs of task τi and each
higher priority task τh released in an interval of length w is given by ⌈w/Th⌉ and that all
execution units of consuming jobs are executed after all execution units of gaining tasks.

Xg
i =

τh∈Γg
∑

h∈hep(i)

⌈

w

Th

⌉

× Ch, Xc
i =

τh∈Γc
∑

h∈hep(i)

⌈

w

Th

⌉

× Ch

Y c
i =

τh∈Γc
∑

h∈hep(i)

⌈

w

Th

⌉

× Eh , Y g
i =

τh∈Γg
∑

h∈hep(i)

⌈

w

Th

⌉

× Eh

F LB1(i, w)=Xg
i + max

(

Xc
i ,

⌈

Y c
i − (Xg

i × Pr − Y g
i )

Pr

⌉)

(10)

Finally, in order to use the workload function F LB1(i, w) in a fixed point iteration to
determine the lower bound RLB1

i on the worst-case response time of task τi, we must show
that F LB1(i, w) is a monotonically non-decreasing function of w.

Theorem 6. F LB1(i, w) is a monotonically non-decreasing function of w.

Proof. See appendix D

We note that a tighter lower bound can be obtained via the simple expedient of
simulating the actual schedule of execution starting from synchronous release of task τi

and all higher priority tasks. We return to this point in Section 6.

15



5.8 Priority Assignment

Deadline Monotonic (DM) [13] priority assignment is optimal for fixed priority pre-emptive
scheduling of constrained deadline tasks conforming to the classical task model where
energy is not considered. In this section, we show that DM priority assignment is also
optimal with respect to our sufficient schedulability tests UB1 and UB2, for energy-
constrained systems with both consuming and gaining tasks.

Definition 2. A priority assignment policy P is said to be optimal with respect to a
schedulability test S, if for every task set τ where there exists some priority assignment
Q such that the task set is schedulable according to test S, then τ is also schedulable
according to test S with the priority ordering given by policy P .

Theorem 7. Deadline Monotonic (DM) priority assignment is an optimal priority as-
signment policy with respect to sufficient schedulability test S (UB1 or UB2) for task sets
comprising any arbitrary combination of consuming and gaining tasks.

Proof. To prove the theorem, we show that any task set τ that is schedulable according
to test S (UB1 or UB2) under some priority ordering Q remains schedulable according
to test S under deadline monotonic priority order P . We do this by transforming priority
order Q into priority order P by swapping the priorities of tasks that are adjacent to each
other in the priority order, but out of DM order. We show that on every swap the task
set remains schedulable according to test S. Let τA and τB be two tasks in τ which are
at adjacent priorities under the initial, schedulable priority ordering, with DA > DB and
τA at a higher priority k than τB, which has a priority i = k + 1 (i.e. the tasks are out
of DM order). Let the upper bound response time of task τB according to schedulability
test S be RUB

i in the initial priority order. We now swap the priorities of the tasks, so
that τB has the higher priority. We consider the following groups of tasks:

(i) hp(k): these tasks have higher priorities than either τA or τB and so their upper
bound response times, according to test S (UB1 or UB2), are unchanged by the swap.

(ii) lp(i): these tasks have lower priorities than either τA or τB and so their upper
bound response times, according to test S (UB1 or UB2), are unchanged by the swap,
since interference from higher priority tasks does not, according to the test, depend on the
relative priority order of those tasks.

(iii) task τB: now has a higher priority than τA, and so is only subject to interference
from tasks in hp(k), rather than hp(k) ∪ τA, hence τB remains schedulable.

(iv) task τA: is now at priority i with τB at higher priority. From the previous
schedulable priority ordering, we have RUB

i ≤ DB ≤ TB and DB < DA ≤ TA, hence
w = RUB

i was computed by test S by including exactly one job of τA, one job of τB and
⌈w/Th⌉ jobs of each higher priority task τh ∈ hp(k). We observe that the computation
of the busy period length w by test S (UB1 or UB2) depends only on this set of jobs
and not on their relative priorities. We now consider w = RUB

i as a possible value for
the response time of task τA under the new priority ordering. As RUB

i ≤ TB, then there
is only one job of task τB released in an interval of length w, along with ⌈w/Th⌉ jobs of
each higher priority task τh ∈ hp(k), and the single job of task τA. Therefore, according
to test S, RUB

i is also the upper bound response time for task τA when it is at priority i.
Since RUB

i ≤ DB < DA, it follows that task τA is schedulable at priority i.

An exact test (4) for PFPASAP scheduling with only consuming tasks was given in [1].
We note that the UB1 and UB2 tests reduce to (4) when there are only consuming tasks,

16



and hence it follows from Theorem 7 that DM priority assignment is also optimal in that
case. Similarly, if all tasks are gaining tasks, then the UB1 and UB2 tests reduce to the
classical exact test (3) for FPPS without energy considerations. DM priority assignment
is again optimal in that case [13].

We note that it remains an open question whether Deadline Monotonic priority as-
signment is optimal with respect to an exact analysis for constrained deadline task sets
with both consuming and gaining tasks scheduled by PFPASAP .

6 Performance Evaluation

In this section, we present the results of an empirical investigation, examining the effec-
tiveness of our sufficient schedulability tests.

6.1 Taskset generation

To perform these experiments, we randomly generated approximately 40000 task sets,
varying the processor utilization, the energy utilization, and the percentage of gaining
tasks. We varied U and U e in the range [0.05, 1] in steps of 0.05. The proportion of
gaining tasks was varied from 0% to 100% in steps of 10% for each pair of values (U, U e),
hence we obtained 100 distinct task sets for each pair (U, U e). Each tasks set comprised 10
tasks. The task parameters were randomly generated as follows: task processor utilization
(Ui = Ci/Ti) using the UUnifast algorithm [6], task energy utilization (U e

i = Ei/Ti × Pr)
using an adapted version of UUnifast to control the type of task generated (gaining or
consuming), and periods randomly generated between 2 and 25200 time units with a
hyper-period limitation technique [15]. Task deadlines were implicit.

The simulation environment used respects the following hypotheses: time and energy
are discretized (they are integers and all scheduling operations are performed before or
after one time unit), the rate of energy replenishment Pr is constant and was set to 15,
tasks consume energy linearly (i.e. each task τi consumes Ei/Ci energy units for each
execution time unit), and we set the maximum battery level Emax = ∞.

6.2 Schedulability tests investigated

We investigated the performance of the following schedulability tests. UTZ the exact
test for FPPS ignoring energy constraints. This was used to provide a schedulability
bound, considering only processing time. SIM is an empirical necessary test based on
simulating the schedule of PFPASAP over more than twice the hyper-period, starting with
synchronous release and the minimum energy level. This is not guaranteed to reveal the
real worst-case scenario, but can be used as a reference for comparison. UB1 the sufficient
test presented in Section 5.4. UB2 the sufficient test presented in Section 5.5. LB1 the
necessary test presented in Section 5.7.

6.3 Experiments

Figure 3 shows how the percentage of task sets that are deemed schedulable by each
of the tests varies with processor utilization. The UTZ test has notionally the highest
performance since it ignores energy considerations. When energy is considered, UTZ,
LB1 and SIM provide necessary tests, upper bounding the number of task sets that

17



 0

 20

 40

 60

 80

 100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Sc
he

du
la

bl
e 

Ta
sk

se
ts

 %

U %

Percentage of Schedulable Tasksets

UTZ
LB1
SIM
UB2
UB1

Figure 3: Percentage of Task sets schedulable

could possibly be schedulable. An exact test considering energy would fall somewhere
between SIM and UB2. We observe that the results confirm that UB2 provides a tighter
bound than UB1, with a larger improvement at higher utilization levels.

In Appendix E we present a further set of experiments showing how schedulability
depends on different parameters, including energy utilization and the proportion of gaining
tasks, via the Weighted Schedulability Measure [5].

7 Conclusions and Future Work

In this paper, we addressed the problem of real-time scheduling in energy harvesting
systems, where both time and energy constraints have to be met. In such systems, tasks
can be classified as gaining or consuming tasks depending on whether or not the system
has a net gain or loss of energy when the task executes. Previous research showed that the
energy work-conserving scheduling policy PFPASAP is optimal among all fixed priority
algorithms for the case where all tasks are consuming tasks.

The major contributions of this paper are as follows: We showed that under PFPASAP ,
the critical instant (worst-case scenario) for task sets with both consuming and gaining
tasks is not necessarily synchronous release with all other tasks. While we did not identify
the specific worst-case scenario for this more general model, we were able to prove a
number of properties that it must have. We used these properties to derive two upper
bounds on task response times, thus forming two sufficient schedulability tests. In a similar
way, we also derived a lower bound response time, and hence a necessary schedulability
test. We proved that Deadline Monotonic is the optimal priority assignment policy for
PFPASAP with respect to our sufficient tests. Finally, we evaluated the performance of

18



the sufficient tests in comparison with a number of necessary tests, including an exact
test for fixed priority pre-emptive scheduling ignoring energy constraints, and an empirical
test based on simulating the schedule for more than a hyperperiod. We found that our
tighter upper bound (sufficient schedulability test UB2) provides good performance over a
wide range of values of different parameters e.g. energy utilization, proportion of gaining
tasks etc. (explored using the weighted schedulability measure). There are a number of
interesting extensions to this work that we intend to explore in the future. These include
an investigation into properties of the worst-case scenario, with the aim of tightening the
sufficient tests developed in this paper, and providing further insight into optimal priority
assignment policies for this energy-constrained scheduling problem. We also intend to
investigate more complex patterns of energy use by tasks, and energy replenishment by
the harvester.

References

[1] Y. Abdeddaïm, Y. Chandarli, and D. Masson. The Optimality of PFPasap Algorithm
for Fixed-Priority Energy-Harvesting Real-Time Systems. In Euromicro Conference
on Real-Time Systems, July 2013.

[2] B. Ahmed-Seddik, G. Despesse, S. Boisseau, and E. Defay. Self-powered resonant
frequency tuning for piezoelectric vibration energy harvesters. Journal of Physics:
Conference Series, 476(1), 2013.

[3] A. Allavena and D. Mossé. Scheduling of frame-based embedded systems with
rechargeable batteries. In Workshop on Power Management for Real-Time and Em-
bedded Systems (in conjunction of IEEE Real-Time and Embedded Technology and
Applications Symposium), 2001.

[4] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal, 8:284–292, 1993.

[5] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability. In Annual
workshop on Operating Systems Platforms for Embedded Real-Time applications (in
conjunction with Euromicro Conference on Real-Time Systems), 2010.

[6] E. Bini and G. C. Buttazzo. Measuring the Performance of Schedulability Tests.
Real-Time Systems, 30(1-2):129–154, 2005.

[7] R. Davis. On exploiting spare capacity in hard real-time systems. PhD thesis, Uni-
versity of York, UK, 1995.

[8] R. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests for fixed priority
real-time systems. IEEE Transactions on Computers, 57(9):1261–1276, Sept. 2008.

[9] R. I. Davis, K. Tindell, and A. Burns. Scheduling slack time in fixed priority pre-
emptive systems. In IEEE Real-Time Systems Symposium, 1993.

19



[10] H. EL Ghor, M. Chetto, and R. H. Chehade. A real-time scheduling framework for
embedded systems with environmental energy harvesting. Computers and Electrical
Engineering, 37:498–510, 2011.

[11] M. Joseph and P. K. Pandya. Finding response times in a real-time system. Computer
Journal, 29(5):390–395, 1986.

[12] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-
aperiodic tasks fixed priority preemptive systems. In IEEE Real-Time Systems Sym-
posium, 1992.

[13] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of
periodic real-time tasks. Performance Evaluation, 2(4):237–250, 1982.

[14] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment, 1973.

[15] C. Macq and J. Goossens. Limitation of the hyper-period in real-time periodic task
set generation. In Conference on Real-time and Embedded Systems, 2001.

[16] C. Moser, D. Brunelli, L. Thiele, and L. Benini. Real-time scheduling with regener-
ative energy. In Euromicro Conference on Real-Time Systems, 2006.

[17] F. Yildiz. Potential ambient energy-harvesting sources and techniques. Journal of
Technology Studies, 35(1), 2009.

20



A Proof of Lemma 2

Case (i) sequence X contains solely execution units of consuming tasks. Since all exe-
cution units consume energy, then for every element X[m], we have EX [m] > Pr and so
E∗

X [m + 1] > E∗
X [m] + Pr hence the maximum number of prior replenishment units is

required by the last element in the sequence and is given by:

I∗

X [LX ] = IX [LX ] =

⌈

E∗
X [LX ] − E(0)

Pr

⌉

(11)

Since the total energy E∗
X [LX ] required by all elements in the sequence is independent

of the order of the elements, the elapsed time I∗
X [LX ]+LX required to execute the sequence

is also independent of the order of the elements.
Case (ii) sequence X contains solely execution units of gaining tasks. Since all execu-

tion units gain energy, no replenishment units are required and the elapsed time for the
sequence equates to its length LX irrespective of the order of the elements.

B Proof of Lemma 5

We may obtain sequence Y from sequence X by an iterative process of choosing the
first execution unit belonging to any gaining task (at position g) and swapping it with
that of the last execution unit of any consuming task (at position k) provided that g <
k. Repeating this process until all consuming execution units come before all gaining
execution units transforms sequence X into sequence Y . Let the new sequences produced
by this process be X1 = X, X2, X3 . . . Xn = Y . Note at most LX/2 swaps are required.
We now show that each swap transforming sequence Xp into sequence Xs where s = p+1,
results in an elapsed time for sequence Xs that is no shorter than that for Xp, and hence
by induction that the elapsed time for sequence Y is no shorter than that for sequence
X. Let Xp[g] and Xp[k] be the elements being swapped where g < k. Since Xp[g] is an
execution unit of a gaining task and Xp[k] is an execution unit of a consuming task, the
energy required for these execution units has the relationship EXp

[g] < EXp
[k]. Recall

that E∗
Xp

[m] is the energy required to execute all execution units in the subsequence from
Xp[1] to Xp[m]. It follows that:

∀m, 1 ≤ m < g E∗
Xs

[m] = E∗
Xp

[m]
∀m, g ≤ m < k E∗

Xs
[m] = E∗

Xp
[m] + EXs

[k] − EXp
[g]

∀m, k ≤ m E∗
Xs

[m] = E∗
Xp

[m]
⇒ E∗

Xs
[m] ≥ E∗

Xp
[m]

Hence the minimum number of replenishment units required to execute the subse-
quences from the 1st to the m−th element of Xp and Xs have the following relationship:I∗

Xs
[m] ≥

I∗
Xp

[m] (see (6) and (7)). Since the number of execution units in each sequence (Xs and
Xp) is the same (i.e. LXp

= LXs
), we have: LXs

+ I∗
Xs

[m] ≥ LXp
+ I∗

Xp
[m]. Thus the

elapsed time required to execute sequence Xs is no shorter than that required for sequence
Xp. Induction over at most LX/2 steps proves that the elapsed time required to complete
sequence Y is no shorter than that required for sequence X.

21



C Proof of Theorem 3

Consider increasing the length of the window from some arbitrary value w to w + v,
comparing the dummy schedules used to derive F UB2(i, w) and F UB2(i, w + v) there are
two effects: (i) all execution units of gaining jobs move to a later time e.g. t + v rather
than t, (ii) new execution units of gaining jobs may be added near the start of the schedule
and new execution units of consuming jobs may be added near the end of the schedule.
Consider sequence X formed in deriving F UB2(i, w) and sequence Y formed in deriving
F UB2(i, w +v) but omitting all of the execution units of the new jobs from (ii). Sequences
X and Y contain the same set of elements. Since all execution units of gaining jobs are
v time units later in the dummy schedule used to construct sequence Y , it follows that
sequence Y can be formed from sequence X by swapping later gaining execution units in
X for earlier consuming execution elements, and as necessary re-ordering sub-sequences
containing solely gaining or solely consuming execution units (Lemma 2). Hence the
elapsed time required to execute sequence Y is no shorter than that required for sequence
X. Consider a further sequence Z, if there were no additional jobs from (ii) then sequence
Z is identical to sequence Y , otherwise it may be obtained from sequence Y by adding
execution units for the missing jobs. Since all execution units require energy, addition of
execution units into a sequence at any point cannot decrease the elapsed time required
to execute the sequence. Hence the elapsed time required to execute sequence Z is no
shorter than that required to execute sequence X.

D Proof of Theorem 6

Consider the formula for F LB1(i, w). Since w appears only in the ceiling functions, it
follows that Xg

i , Xc
i and Y g

i are all non-decreasing functions of w. Further, (Xg
i Pr −

Y g
i ) represents the net energy increase while all the gaining jobs execute. Since every

execution unit of a gaining task is by definition energy positive, this quantity is also
a non-decreasing function of w. Thus Y c

i − (Xg
i Pr − Y g

i ) may decrease with increasing
w. The largest possible decrease is obtained when Y c

i remains at the same value, while
(Xg

i Pr − Y g
i ) increases, hence ⌈(Xg

i Pr − Y g
i )/Pr⌉ decreases. However, such a decrease is

always at least compensated for by the increasing value of the first term in (10), i.e. Xg
i .

This happens because the additional energy made available by each execution unit of an
additional gaining job is no more than that available from a replenishment unit. Hence
⌈(Xg

i Pr −Y g
i )/Pr⌉ cannot decrease by more than Xg

i increases. We note that monotonicity
can also easily be seen by considering the sequence Z (in Theorem 5) which can only take
a longer elapsed time to execute with the addition of further jobs, since all execution units
require a positive amount of energy.

E Weighted Schedulability

As well as processor utilization, task set schedulability is dependent on a number of
other key parameters, including: energy utilization, and the percentage of gaining tasks.
Evaluating all possible combinations of these parameters is not possible, instead, the
evaluation in this section varies one parameter at a time, with the results presented in
terms of the weighted schedulability measure [5].

The figures in this section show the weighted schedulability measure Wy(p) for each

22



schedulability test y as a function of parameter p. For each value of p, this measure
combines results for all of the task sets Γ generated for all of a set of equally spaced
utilization levels (5% to 100% in steps of 5%).

Let Sy(Γ, p) be the binary result (1 or 0) of schedulability test y for a task set Γ with
parameter value p:

Wy(p) =

(

∑

∀Γ

UΓ × Sy(Γ, p)

)

/
∑

∀Γ

UΓ (12)

where UΓ is the processor utilization of taskset Γ. The weighted schedulability measure
reduces what would otherwise be a 3-dimensional plot to 2 dimensions [5]. Weighting the
individual schedulability results by task set utilization reflects the higher value placed on
being able to schedule higher utilization task sets.

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Ue %

Varying Ue

UTZ
LB1
SIM
UB2
UB1

Figure 4: Varying the energy utilization

Figure 4 shows how the weighted schedulability measure for each schedulability test
depends on task set energy utilization. The UTZ test ignores energy constraints and
hence exhibits minimal variation. The tests that consider energy (LB1, SIM , UB2,
UB1) all show the same pattern of behaviour as the classical schedulability tests do
against processor utilization, i.e. schedulability reduces at high levels of utilization (energy
utilization in this case). We note that the performance of the simple sufficient test UB1
degrades with increasing energy utilization.

Figure 5 shows the influence of task set composition. When the task sets comprise
100% gaining tasks, then all of the tests give precisely the same performance. This is
because no energy replenishment is needed, and in this case all of the tests reduce to the

23



 0

 20

 40

 60

 80

 100

0 10 20 30 40 50 60 70 80 90 100

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

gainers %

Varying gainers %

UTZ
LB1
SIM
UB2
UB1

Figure 5: Varying the gaining tasks ratio

exact test for fixed priority pre-emptive scheduling with no energy constraints. Similarly,
for task sets comprising only consuming tasks (0% gaining tasks), the worst-case scenario
is synchronous release with the battery level set to the minimum [1]. This is captured
by all of the tests that consider energy (LB1, SIM , UB2, UB1), hence they all have
the same performance. (We note that the UTZ test which ignores energy constraints has
performance that is notionally better in this case). Between these two extremes, the closer
the task sets are to an equal mix of consuming and gaining tasks, the more opportunity
there is for consuming tasks to make use of the net energy gain from gaining tasks, and
hence the more UB1 and UB2 diverge from (SIM) and LB1. Here, UB2 is less impacted
since it takes some account of the net energy gain due to gaining jobs that execute ahead
of consuming jobs.

Figure 6 shows the impact of constrained deadlines on performance. Here we vary the
deadlines from heavily constrained where Di − Ci is 10% of Ti − Ci to 100% of Ti − Ci

(i.e. implicit deadlines). We observe that all of the schedulability tests are influenced by
the tightness of deadlines to a similar degree, with heavily constrained deadlines having
significant impact on schedulability in all cases.

24



 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 100

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

(Di-Ci)/(Ti-C_i) %

Varying dealine

UTZ
LB1
SIM
UB2
UB1

Figure 6: Varying relative deadlines in [Ci, Ti]

25


	Introduction
	Related Work
	Models and Notations
	Energy Source Model
	Energy Storage Unit Model 
	Task Model
	The Scheduling Algorithm PFPASAP 

	Existing Response time analysis
	Schedulability Analysis
	Worst-case scenario
	Sequences and Energy Busy Periods
	Response Time Upper Bounds
	Upper Bound RUB1
	Upper Bound RUB2
	Battery Capacity
	Response Time Lower Bound
	Priority Assignment

	Performance Evaluation
	Taskset generation
	Schedulability tests investigated
	Experiments

	Conclusions and Future Work
	Proof of Lemma 2
	Proof of Lemma 5
	Proof of Theorem 3
	Proof of Theorem 6
	Weighted Schedulability

